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Abstract
We have rigorously derived the perimeter generating function for the mean-
squared radius of gyration of convex polygons. This function was first
conjectured by Jensen. His nonrigorous result is based on the analysis of
the long series expansions.

PACS numbers: 05.50.+q, 05.70.Jk, 02.10.Ox

Jensen [1] derived long series expansions for the perimeter generating functions of the radius
of gyration of various self-avoiding polygons on the square lattice with a convexity constraint.
He used the series to obtain six algebraic exact solutions for the generating functions. In the
special cases of rectangular, Ferrers, pyramid and staircase polygons, the exact solutions are
relatively simple and have been proved rigorously by Lin [2, 3]. Recently the exact solution
for directed convex polygons was also verified by Lin [4]. We shall rigorously prove the last
exact solution conjectured by Jensen for convex polygons in this paper.

The perimeter generating function for the number of self-avoiding polygons on the square
lattice is given by

P(z) =
∞∑

n=2

pnz
2n, (1)

where pn is the number of self-avoiding polygons with perimeter 2n. The anisotropic perimeter
generating function for the number of polygons is defined by

P(x, y) =
∞∑

r=1

∞∑
s=1

pr,sx
2ry2s , (2)

where pr,s is the number of polygons with horizontal width r and vertical height s.
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Figure 1. A convex polygon bounded by a rectangle. The rectangle is divided into five polygons
where the middle one is a convex polygon and the others are Ferrers polygons.

The generating functions for the area-weighted moments of convex polygons on the square
lattice are defined by

P (m)(z) =
∑

n

z2n

[∑
k

kmcn,k

]
, (3)

where cn,k is the number of polygons with 2n steps and area k. The corresponding anisotropic
generating functions are

P (m)(x, y) =
∑
r,s

x2ry2s

[∑
k

kmcr,s,k

]
, (4)

where cr,s,k is the number of polygons with width r, height s and area k. Our definition of
P (2) is slightly different from Enting and Guttmann [5]. In their definition, k2 is replaced by
k(k − 1)/2.

The perimeter generating function for the mean-squared radius of gyration of polygons is
given by [1]

R(z) =
∞∑

n=2

rnz
2n, (5)

where

rn =
∑
�n

2n−1∑
i,j=0

[(xi − xj )
2 + (yi − yj )

2]/2

=
∑
�n

[
2n

2n−1∑
j=0

(
x2

j + y2
j

) −
( 2n−1∑

j=0

xj

)2

−
( 2n−1∑

j=0

yj

)2]
; (6)

the symbol �n means the set of all polygons of perimeter length 2n, and the coordinate of
each vertex j on the polygon is denoted by (xj , yj ).

A convex polygon with 2n steps and area k is bounded by an r × s rectangle as shown
in figure 1. The bounding rectangle is divided into five polygons, where the middle one
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is a convex polygon and the others are Ferrers polygons (denoted by A, B, C and D). For
convenience, the area of the Ferrers polygon A is also denoted by A, etc.

The Ferrers polygon C as shown in figure 1 is formed from a directed walk with right
or up steps, extended at the starting point with a horizontal step and at the end point with a
vertical step, and then closed by straight lines to form a polygon. Each Ferrers polygon C is
characterized by a set of integers (a1, bm, . . . , am, b1) such that the directed walk starts with
a1 right steps, followed by bm up steps, etc. We define

C∗(a, b) = a1(b1 + · · · + bm)2 + a2(b1 + · · · + bm−1)
2 + · · · + amb2

1

+ b1(a1 + · · · + am)2 + b2(a1 + · · · + am−1)
2 + · · · + bma2

1 . (7)

For each convex polygon, it can be shown that [3]

2n

2n−1∑
j=0

(
x2

j + y2
j

) −
( 2n−1∑

j=0

xj

)2

−
( 2n−1∑

j=0

yj

)2

=
5∑

m=1

gm, (8)

where

g1 = n2(n2 + 2)/3,

g2 = −2n2(A + B + C + D),

g3 = 2(A + B + C + D)2,

g4 = 2n(A∗ + B∗ + C∗ + D∗),
g5 = −2[(A + B)2 + (C + D)2 + (A + C)2 + (B + D)2].

The contribution of gm to the radius of gyration generating function is denoted by R(m)(z) and
we have

R(z) =
5∑

j=1

R(j)(z). (9)

It follows from
z

2

d

dz
z2n = nz2n (10)

that

R(1)(z) =
∞∑

n=2

[n2(n2 + 2)/3]pnz
2n =

[
1

3

(
z

2

d

dz

)4

+
2

3

(
z

2

d

dz

)2
]

P(z). (11)

Similarly it follows from

A + B + C + D = rs − k (12)

that

R(2)(z) = −2

(
z

2

d

dz

)2 [
xy

4

∂2

∂x∂y
P (x, y)

]
x=y=z

+ 2

(
z

2

d

dz

)2

P (1)(z). (13)

It follows from

(A + B + C + D)2 = r2s2 − 2rsk + k2 (14)

that

R(3)(z)=
[

2

(
x

2

∂

∂x

)2 (
y

2

∂

∂y

)2

P(x, y)− 4

(
x

2

∂

∂x

) (
y

2

∂

∂y

)
P (1)(x, y)

]
x=y=z

+ 2P (2)(z).

(15)
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The perimeter generating function for convex polygons was first derived by Delest and
Viennot [6] using the method of algebraic language, and later by several authors using different
methods [7–9]:

P(z) = z4(1 − 6z2 + 11z4 − 4z6)

(1 − 4z2)2
− 4z8

(1 − 4z2)3/2
. (16)

The corresponding anisotropic generating function was derived by Lin and Chang [9]:

P(x, y) = x2y2f (x, y)

�2
− 4x4y4

�3/2
, (17)

where

f = 1 − 3(x2 + y2) + 3x4 + 3y4 + 5x2y2 − (x2 + y2)(x4 + y4) − x2y2(x2 − y2)2,

� = 1 − 2x2 − 2y2 + (x2 − y2)2.

Based on series expansions, Enting and Guttmann [5] obtained two generating functions
for the area weighted moments of the number of convex polygons:

P (1) = z4(1 − 12z2 + 50z4 − 76z6 + 42z8 − 48z10 + 32z12)

(1 − 4z2)4
+

4z8

(1 − 4z2)5/2
, (18)

P (2) = M

(1 − 4z2)6
+

N

(1 − 4z2)9/2
, (19)

where

M = z4 − 16z6 + 172z8 − 1116z10 + 4062z12 − 8304z14

+ 10 160z16 − 7872z18 + 3840z20 − 1024z22,

N = −54z8 + 312z10 − 648z12 + 624z14 − 240z16.

These conjectures were confirmed by Lin [10, 11] who also derived the anisotropic generation
function

P (1)(x, y) = x2y2T

�4
+

4x4y4[1 − (x2 − y2)2]

�5/2
, (20)

where

T = 1 − 6(x2 + y2) + 15(x4 + y4) + 20x2y2 − 20(x6 + y6) − 18(x4y2 + x2y4)

+ 15(x8 + y8) − 8(x6y2 + x2y6) + 28x4y4 − 6(x10 + y10)

+ 22(x8y2 + x2y8) − 40(x6y4 + x4y6) + x12 + y12 − 12(x10y2 + x2y10)

− 5(x8y4 + x4y8) + 64x6y6 + 2(x12y2 + x2y12) + 18(x10y4 + x4y10)

− 20(x8y6 + x6y8) + 2(x12y4 + x4y12) − 8(x10y6 + x6y10) + 12x8y8.

Substituting the above expressions into equations (11), (13) and (15), we get

R(1)(z) = 2z4F1

(1 − 4z2)6
+

8z8G1

(1 − 4z2)11/2
, (21)

where

F1 = 4 − 63z2 + 696z4 − 4022z6 + 14 160z8 − 29 824z10 + 34 560z12 − 16 896z14,

G1 = −48 + 381z2 − 1494z4 + 2872z6 − 2200z8.

R(2)(z) = 32z8F2

(1 − 4z2)6
+

16z8G2

(1 − 4z2)11/2
,

(22)
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Figure 2. A convex polygon divided into a pyramid polygon on top of another upside-down
pyramid polygon.

where
F2 = −24 + 226z2 − 1023z4 + 2684z6 − 4080z8 + 3264z10 − 1024z12,

G2 = 40 − 305z2 + 1174z4 − 2528z6 + 2792z8 − 1176z10,

R(3)(z) = 4z8F3

(1 − 4z2)6
+

4z8G3

(1 − 4z2)11/2
,

(23)

where

F3 = 77 − 810z2 + 3772z4 − 10 072z6 + 16 132z8 − 14 988z10 + 6568z12 + 912z14 − 576z16,

G3 = −75 + 648z2 − 2528z4 + 5584z6 − 7240z8 + 5120z10 − 1440z12.

We define a generating function R(K) which generates convex polygons with perimeter
2n and weight K. It follows from the rotational symmetry of square lattice that

R(A∗) = R(B∗) = R(C∗) = R(D∗) = R(6), (24)

R[(A + B)2] = R[(C + D)2] = R[(A + C)2] = R[(B + D)2] = R(7). (25)

Consequently, we have

R(4) = 4z
∂

∂z
R(6), (26)

R(5) = −8R(7). (27)

We use the method of Lin and Chang [9] to derive R(6) and R(7). Each convex polygon
can be uniquely divided into a pyramid polygon on top of a directed convex polygon. There
are three possibilities: pyramid polygon, a pyramid polygon on top of another upside-down
pyramid polygon (see figure 2) and a pyramid polygon on top of a directed convex polygon (see
figure 3). The perimeter generating function of convex polygons is [9]

P(x, y) = G(x, y) +
∞∑

r=1

∞∑
m=1

∞∑
n=1

Gr+m+n(x, y)x−2mGm(x, y)

+ 2
∞∑

r=1

∞∑
m=1

∞∑
n=0

Gr+m(x, y)x−2mHm+n(x, y), (28)

where G is the generating function of pyramid polygons, Gm is the generating function of
pyramid polygons with width m and Hm is the generating function of directed convex polygons
whose width at top is m.
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Figure 3. A convex polygon divided into a pyramid polygon on top of a directed convex polygon.

m n

Figure 4. The upside-down pyramid polygon as shown in figure 2 has the width m. The convex
polygon is bounded by a minimum rectangle and the distance between the upside-down pyramid
polygon and the vertical boundary of the rectangle is denoted by n.

We use the method of Lin and Chang to calculate the contribution of each category of
convex polygons to R(6) = R(B∗). The contribution of pyramid polygons is zero since
A∗ = B∗ = 0. The contribution S1 of convex polygons shown in figure 2 can be calculated
as follows. Consider a convex polygon such that the upside-down pyramid has the width
m, height h, weights b and b∗ (figure 4). The weight B∗ of the whole convex polygon (one
pyramid polygon on top of an upside-down pyramid polygon) is

B∗ = b∗ + 2nb + n2h + nh2. (29)

It follows from the above equation that

S1 =
∞∑

r=1

∞∑
m=1

∞∑
n=1

Gr+m+n(z)z
−2m

[
G(B∗)

m + 2nG(B)
m + n2DyGm + nD2

yGm

]
x=y=z

, (30)

where

Dy = y

2

∂

∂y
.

G(B∗)
m (z) and G(B)

m (z) generate pyramid polygons with perimeter 2n and weights B∗ and B,
respectively, such that the width of polygons is m.

Similarly the contribution of convex polygons shown in figure 3 is

S2 =
∞∑

r=1

∞∑
m=1

∞∑
n=0

Gr+m(z)z−2mH(B∗)
m+n (z)

+
∞∑

r=0

∞∑
m=1

∞∑
n=1

Gm+n(z)z
−2m

[
H(B∗)

r+m + 2nH(B)
r+m + n2DyHr+m + nD2

yHr+m

]
x=y=z

. (31)

6



J. Phys. A: Math. Theor. 43 (2010) 265001 K Y Lin

The generating functions G(B)
m , G(B∗)

m , H(A∗)
m , H(B)

m and H(B∗)
m have been calculated by Lin [11]

recently. We use Mathmatica to carry out calculation and the results are

R(6) = S1 + S2 = 2z8(6 − 42z2 + 115z4 − 174z6 + 144z8 − 32z10)

(1 − 4z2)5

+
2z8(−5 + 24z2 − 46z4 + 56z6 − 24z8)

(1 − 4z2)9/2
(32)

and

R(4)(z) = 4z
d

dz
R(6) = 16z8(24 − 186z2 + 690z4 − 1678z6 + 2544z8 − 2016z10 + 512z12)

�6

+
16z8(−20 + 110z2 − 324z4 + 668z6 − 752z8 + 336z10)

�11/2
.

The generating function R[(A + B)2] = R(7) can be derived in a similar way and the result is

R(5)(z) = −8R(7) = 16z8F5

�6
+

16z8G5

�11/2
, (33)

F5 = −20 + 210z2 − 973z4 + 2575z6 − 4077z8 + 3795z10 − 1706x12 − 228x14 + 144z16,

G5 = 19 − 163z2 + 631z4 − 1388z6 + 1800z8 − 1304z10 + 360z12,

R(z) =
5∑

j=1

R(j)(z)

= 2z4(1 − 2z2)(4 − 55z2 + 388z4 − 1058z6 + 956z8 + 2064x10 − 6592z12 + 6400z14)

(1 − 4z2)6

− 4z8(15 + 22z2 − 408z4 + 1664z6 − 3720z8 + 3456z10)

(1 − 4z2)11/2
, (34)

which was first conjectured by Jensen [1].
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